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Executive Summary
• In this paper, we review the idea of volatility pumping and discuss how it helps 

boost assets of sovereign wealth funds.

• Asset diversification leads to lower portfolio volatility which, in turn, increases 
expected growth of sovereign portfolios.

• The benefits of volatility pumping increase with the original portfolio volatility. 

1  INTRODUCTION

Can sovereign funds structure their assets 
– financial or real – with a view to boosting 
these assets’ growth? We will address this 
question after discussing the basics of 
volatility pumping.

Volatility pumping is an asset allocation  
and trading strategy that makes use of the 
following fact: Even though the correct way to 
measure the performance of a financial asset 
is its geometric mean return, its expectation at 
any point in time is its arithmetic mean return, 
which is always equal to or higher than its 
geometric mean.

1.1  COMPOUNDED RETURN:  
A REMINDER

Because the value of a portfolio P  0, 
continuously compounded at a rate r, yields  

rTP = P eT 0 after T periods, it follows that a 
compounded return r is 

(1). = 
1og 

PT
P0

T .

 

r   

Specifically, if a dollar is continuously 
compounded over a year to yield P , T then the 
compounded return on that dollar is log(PT).  
In an uncertain world, the expected 
compounded return, also called compounded 
growth, is  E (1og(PT)).

2  VOLATILITY PUMPING

Say we have two uncorrelated assets with zero 
expected growth. Is it possible to combine 
them so that the portfolio’s expected growth 
exceeds zero?

2.1  TWO SIMPLE EXAMPLES

Example 1: A risk asset and a riskless asset, 
both zero-growth. Let us try our hand at 
building a portfolio with a risk-free asset 
yielding zero interest and a risk asset that over 
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year sees its value multiplied by three in the upstate with a probability of 50% or divided by 

three in the downstate with a probability of 50%. The expected growth rate for the risk asset 

is  

ø÷
ö1

3èç
æ  = 0. (2) 

Both assets have an expected growth rate of zero. But what happens if we allocate, say, one 

quarter of a dollar to the risk asset and three quarters of a dollar to the riskless asset? The 

dollar will be worth either (1/4)⋅3+(3/4)⋅1 = 3/2 in the upstate with a probability of 50% or 

(1/4)⋅(1/3)+(3/4)⋅1 = 5/6 in the downstate with a probability of 50%.  

The expected growth rate of the portfolio is therefore 

1
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6 = 0.1157. (3) 

It appears that diversification generates portfolio growth of 11.57% even though the 

expected growth of the portfolio’s constituents is zero. But we can do better than that. Let us 

try a 50-50 allocation instead of 25-75; the dollar will be worth (1/2)⋅3+(1/2)⋅1 = 2 in the 

upstate and (1/2)⋅(1/3)+(1/2)⋅1 = 2/3 in the downstate. 

1
2

Now the portfolio’s expected growth rate is 

log(2)+ 
1
2log èç

æ2
3ø÷
ö=0.1438. (4) 

Equal allocation to the risk assets and riskless assets further improves portfolio growth. 
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As shown in the preceding example, diversification is an engine of financial growth. 

How so? Diversification reduces volatility, which in turn boosts growth. It is well known in 

finance that lower volatility translates into higher growth. In Appendix 1 we show that the 

expected growth rate, or compounded return, of an asset increases as the asset volatility 

decreases. Specifically:  

.  (5) 

In the next example, we discuss a similar instance of volatility pumping in a 

portfolio of two risk assets. 

Example 2: Two uncorrelated risk assets, both zero-growth. Consider now two 

uncorrelated risk assets that see their value either tripled or divided by three with equal 

probability. As noted in Example 1, the expected growth rate of these assets, taken 

individually, is zero. But if we constitute an equal-weight portfolio, we have four states of 

the world for both assets: (upstate, upstate), (upstate, downstate), (downstate, upstate) and 

(downstate, downstate). The expected growth rate of this portfolio is   
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The portfolio is expected to grow at 25.54% over one year, even though each of its 

two constituents will have zero growth. 
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2.2  Optimal portfolio growth with a risk asset and a riskless 

asset 

In Example 1, the expected growth of the portfolio increased as the allocation to the risk 

asset rose from 25% to 50%. A related question is whether there is an optimal portfolio that 

maximizes the expected growth. The answer is yes. If the problem is to allocate a portfolio 

to a risk asset and a zero-yielding riskless asset, and if the risk asset value is multiplied by m 

with probability p and by 1/m with probability (1−p), then the optimal allocation to the risk 

asset is  

α (7) 

The proof is in Appendix 2. Note that for p = 1/2 the risk asset has an expected growth 

of zero and the risk asset allocation is α*=1/2. In this case, optimal growth is
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1
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m
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2 +

1
2m = 
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1
2+ 

m
4+

1
4m . (8)

Recall that m represents the magnitude of the asset price move. Effectively, it is a 

measure of volatility. 

Exhibit 1: Optimal portfolio growth as a function of volatility 

Portfolio with a risk asset and a riskless asset, both with zero average compounded  return 
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As shown in the preceding example, diversification is an engine of financial growth. 

How so? Diversification reduces volatility, which in turn boosts growth. It is well known in 

finance that lower volatility translates into higher growth. In Appendix 1 we show that the 

expected growth rate, or compounded return, of an asset increases as the asset volatility 

decreases. Specifically:  

Growth	rate	of	portfolio = Arithmetic	return −	
1
2Variance	of	return 

.  (5) 

In the next example, we discuss a similar instance of volatility pumping in a 

portfolio of two risk assets. 

Example 2: Two uncorrelated risk assets, both zero-growth. Consider now two 

uncorrelated risk assets that see their value either tripled or divided by three with equal 

probability. As noted in Example 1, the expected growth rate of these assets, taken 

individually, is zero. But if we constitute an equal-weight portfolio, we have four states of 

the world for both assets: (upstate, upstate), (upstate, downstate), (downstate, upstate) and 

(downstate, downstate). The expected growth rate of this portfolio is   
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The portfolio is expected to grow at 25.54% over one year, even though each of its 

two constituents will have zero growth. 
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It appears that diversification generates portfolio growth of 
11.57% even though the expected growth of the portfolio’s 
constituents is zero. But we can do better than that. Let us try  
a 50-50 allocation instead of 25-75; the dollar will be worth 
(1/2)*3+(1/2)*1 = 2 in the upstate and (1/2)*(1/3)+(1/2)*1 = 2/3 
in the downstate.

Now the portfolio’s expected growth rate is
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Equal allocation to the risk assets and riskless assets further 
improves portfolio growth.

As shown in the preceding example, diversification is an engine 
of financial growth. How so? Diversification reduces volatility, 
which in turn boosts growth. It is well known in finance that 
lower volatility translates into higher growth. In Appendix 1,  
we show that the expected growth rate, or compounded  
return, of an asset increases as the asset volatility decreases. 
Specifically:

(5)Growth	rate	of	portfolio = Arithmetic	return −
1
2	 Variance	of	return .

In the next example, we discuss a similar instance of volatility 
pumping in a portfolio of two risk assets.

Example 2: Two uncorrelated risk assets, both zero-growth. 
Consider now two uncorrelated risk assets that see their value 
either tripled or divided by three with equal probability. As noted 
in Example 1, the expected growth rate of these assets, taken 
individually, is zero. But if we constitute an equal-weight 
portfolio, we have four states of the world for both assets: 
(upstate, upstate), (upstate, downstate), (downstate, upstate) 
and (downstate, downstate). The expected growth rate of this 
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The portfolio is expected to grow by 25.54% over one year, even 
though each of its two constituents will have zero growth.

2.2  OPTIMAL PORTFOLIO GROWTH WITH A RISK 
ASSET AND A RISKLESS ASSET

In Example 1, the expected growth of the portfolio increased as 
the allocation to the risk asset rose from 25% to 50%. A related 
question is whether there is an optimal portfolio that maximizes 
the expected growth. The answer is yes. If the problem is to 
allocate a portfolio to a risk asset and a zero-yielding riskless 
asset, and if the risk asset value is multiplied by m with 
probability p and by 1/m with probability (1-p), then the optimal 
allocation to the risk asset is

(7)α*  = 
p(m+1)−1

m−1 .. 

The proof is in Appendix 2. Note that for p = 1/2 the risk asset 
has an expected growth of zero and the risk asset allocation is  
α*= 1/2. In this case, optimal growth is
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Recall that m represents the magnitude of the asset price move. 
Effectively, it is a measure of volatility.

Exhibit 1 shows the optimal growth measured in basis points 
(bps) as a function of the parameter m.

As this exhibit indicates, the growth numbers induced by 
volatility pumping are only meaningful for highly volatile assets.



3JAN 2020  •   QUANTITATIVE RESE ARCH AND ANALY TICS

7

(9) 

Appendix 2 proves this result and extends it to multiple assets. 

Second, as the portfolio is more diversified, the portfolio risk decreases and its expected 

growth increases. To help clarify the gain from volatility pumping, compare the growth of a 

single-asset portfolio with that of a multi-asset portfolio. We assume all assets are 

uncorrelated, with the same expected arithmetic return µ and the same volatility σ. As 

discussed above, the growth of a single-asset portfolio is µ−(1/2)σ2. We show in Appendix 2 

that the growth of the multi-asset portfolio is µ−(1/2n)σ2. So the gain from volatility pumping 

is  

µ− 
σ2

2n− è
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σ2

2
n−1

n . (10) 

This is close to σ2/2 for large n, which corresponds to the number of risky assets in 

our portfolio. 

2.4  Implications for sovereign asset management 

Volatility pumping has important implications for underdiversified commodity-producing 

countries. For example, consider a single-commodity country that produces oil. Let us 

analyze the implications for this country’s portfolio growth if it swaps its reserves against a 
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2.4  Implications for sovereign asset management 

Volatility pumping has important implications for underdiversified commodity-producing 

countries. For example, consider a single-commodity country that produces oil. Let us 

analyze the implications for this country’s portfolio growth if it swaps its reserves against a 

portfolio of four equally weighted and correlated commodities: oil, copper, gold and 

aluminum.  

From 10 years of historical daily spot prices, we can construct the appropriate 

covariance and correlation matrices for the sovereign’s returns. We use Brent prices for oil. 

The volatilities (standard deviation of returns) are given by: Brent oil σo=26%, copper

σc=14.8% , gold σg=7.6%  and aluminum σa=14.9% . The correlations among the

commodities are given by: =0.35, ϱog=0.17 , ϱoa=0.3 , ϱcg=0.277 , ϱca=0.634  and

ϱga=0.214. Thus, the covariance matrix is given by

( 

( 0.0680 0.0135 0.0034 0.0177 )0.0135 0.0219 0.0031 0.0140 
0.0034 0.0032 0.0058 0.0024 
0.0117 0.0140 0.0024 0.0222 

(11) 

The expected growth of the single-commodity portfolio Pt is given by (see Appendix 2

for the derivation):  
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(12) 

The expected growth of a portfolio of n assets Πt is given by (see Appendix 2 for

the derivation):  

E(gΠ) =
dlnΠt

dt   (13) 

In our case, the weights of the four commodities are equal to one another, so 

αT= èç
æ

ø÷
ö 

1
4, 

1
4, 

1
4, 

1
4 . (14)

The pickup in growth due to volatility pumping can be obtained by subtracting E(gP)

from E(gΠ) and inserting the values for σ2
o  for σ2  and the values for Σ from the

covariance matrix above: 

2
o(σ  )/2-(1/2)αTΣα = 2.735%. (15) 

The pickup is clearly substantial. 

How would we engineer this swap in practice? Obviously, there would be a number of 

issues involved, including the depth and liquidity of commodity markets, the 

feasibility/legality of macro swaps at the sovereign level and the search for a substitute 

portfolio. Avenues for resolving these problems would include commodity swaps or 

= r + α T(µ-r ) - (1/2)αTΣα.
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Exhibit I: Optimal portfolio growth as a function of volatility
Portfolio with a risk asset and a riskless asset, both with zero average 
compounded return.

m Optimal growth (bps)
1.00 0

1.05 3

1.10 11

1.15 24

1.20 41

1.25 62

1.30 86

1.35 112

1.40 141

1.45 172

1.50 204

2.00 589

3.00 1,438

4.00 2,231

5.00 2,939

Source: PIMCO 

2.3  OPTIMAL PORTFOLIOS AND VOLATILITY 
PUMPING WITH MULTIPLE ASSETS

We can extend this analysis to multiple assets and a continuous 
time framework. Two results are worthy of note. First, if we are 
restricted to a risk asset and a riskless asset, then, in an optimal 
portfolio,

(9)Risk	asset	share =	 Sharpe	ratio	of	risk	asset
VoIativity	of	risk	asset	returns

Appendix 2 proves this result and extends it to multiple assets.

Second, as the portfolio is more diversified, the portfolio risk 
decreases and its expected growth increases. To help clarify 
the gain from volatility pumping, compare the growth of a 
single-asset portfolio with that of a multi-asset portfolio. We 
assume all assets are uncorrelated, with the same expected 
arithmetic return μ and the same volatility σ. As discussed 
above, the growth of a single-asset portfolio is µ -(1/2) 2σ .  
We show in Appendix 2 that the growth of the multi-asset 
portfolio is µ-(1/2) 2σ . . So the gain from volatility pumping is

(10)µ - σ
2

è
ç
æ

ø
÷
ö

2n -  
σ2

2  =
σ2

2
n-1
n .µ -  .  

This is close to 2σ /2 for large n, which corresponds to the 
number of risk assets in our portfolio.

2.4  IMPLICATIONS FOR SOVEREIGN ASSET 
MANAGEMENT

Volatility pumping has important implications for underdiversified 
commodity-producing countries. For example, consider a  
single-commodity country that produces oil. Let us analyze the 
implications for this country’s portfolio growth if it swaps its 
reserves against a portfolio of four equally weighted and 
correlated commodities: oil, copper, gold and aluminum.

From 10 years of historical daily spot prices, we can construct 
the appropriate covariance and correlation matrices for the 
sovereign’s returns. We use Brent prices for oil. The volatilities 
(standard deviation of returns) are given by: Brent oil σ =26%, o
copper σ =14.8%, gold =7.6% and aluminum =14.9%. The c σg σa
correlations among the commodities are given by : ϱ =0.35,  oc

 ϱ =0.17  , ϱ =0.3 , ϱ =0.27 7, ϱ =0.634 anog
 d ϱ =0.214. Thus, oa cg ca ga

the covariance matrix is given by

(11)
0.0680 0.0135 0.0034 0.0177 
0.0135 0.0219 0.0031 0.0140 
0.0034 0.0032 0.0058 0.0024 
0.0117 0.0140 0.0024 0.0222

The expected growth of the single-commodity portfolio Pt is 
given by (see Appendix 2 for the derivation):

(12)E(gP) =
dlnPt

dt    = µ - σ2/2.. 

The expected growth of a portfolio of n assets Πt is given by 
(see Appendix 2 for the derivation):

(13) E(gΠ) =
dlnΠt

dt   = r + α T(µ-r ) - (1/2)αTΣα..

In our case, the weights of the four commodities are equal to 
one another, so

(14)αT= èç
æ

ø÷
ö 

1
4, 

1
4, 

1
4, 

1
4 . .  , , ,

The pickup in growth due to volatility pumping can be obtained 
by subtracting E(g )  from E(g )P Π   and inserting the values for   

2 2 σ  for o σ  and the values for Σ from the covariance matrix above:

(15)
2
o(σ  )/2-(1/2)αTΣα = 2.735%.. 

The pickup is clearly substantial.

How would we engineer this swap in practice? Obviously, there 
would be a number of issues involved, including the depth and 
liquidity of commodity markets, the feasibility/legality of macro 
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Appendix 1: Geometric and arithmetric growth rates 

Let r be the arithmetic rate of return. Then log(1+r) is the geometric rate of return – what we 

call the growth rate. A second-order Taylor expansion of log(1+r) around the expectation of 

r – which we call µ – will give  

(A1.1)

Taking expectations on both sides, we obtain  

E (g) = E (log(1+r)) ≈ log (1+µ) -
2(1+µ) (A1.2)

Therefore, as mentioned in the main text, a lower volatility of asset returns implies a 

higher expected growth. 

When prices follow a geometric Brownian motion, 

dP
= µdt + σdWt. (A1.3) 

Then, by Ito’s lemma, 

è
ç
æ

ø
÷
ö

dlogPt =
σ2

2 (A1.4) 

Hence, expected growth is equal to 

V(r)
2

Pt

t

µ - dt + σdWt.
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log(1+r) ≈ log(1+µ) + 
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(A1.5) 

meaning that expected growth (or expected geometric return) is equal to the drift of the 

return (or expected arithmetic return) minus the variance of returns. 

swaps at the sovereign level and the search for a substitute 
portfolio. Avenues for resolving these problems would  
include commodity swaps or supranational clearing banks. 
Given the magnitude of the benefit, it seems to us to be a 
worthwhile exercise.

3  CONCLUSION

In this paper, we explored the potential benefits of volatility 
pumping for sovereign wealth funds. This asset allocation 
strategy makes use of the fact that while the expectation of  
a financial asset’s performance is its arithmetic mean return,  
the correct measure of its performance is its geometric mean 
return. Because it is a mathematical fact that the arithmetic 
mean return is greater than or equal to the geometric mean 
return, we may benefit from the difference to increase the 
growth of the sovereign portfolio.

The effect of pumping is most significant when the variance  
of the original portfolio is high; as we have shown, the gain  
from pumping is a positive function of volatility. As the number 
of assets in the portfolio increases, the gain from pumping 
approaches 50% of the variance of risk asset returns. Hence, 
the higher the variance, the larger the benefit.

Using the simple example of a single-commodity-producing 
sovereign, we analyzed the implications for the country’s 
portfolio growth of “swapping” its reserves against a portfolio of 
four equally weighted and correlated commodities: oil, copper, 
gold and aluminum. Given the substantial growth pickup, we 
believe the strategy could be highly attractive for sovereign 
wealth funds to use in their asset-liability management 
activities. The swap portfolio does not have to be limited to other 
commodities, as in our example. It can include equity indices, 
real or nominal bond indices, real estate or any alternative asset 
class with variance and correlation characteristics that will 
maximize the growth pickup due to volatility pumping.

BIBLIOGRAPHY

Sugato Bhattacharyya and Vikram Nanda. “Portfolio Pumping, 
Trading Activity and Fund Performance.” Review of Finance, 
July 2013: 885–919.

Zvi Bodie and Marie Briere. “Optimal Asset Allocation for 
Sovereign Wealth Funds: Theory and Practice.” Boston University 
School of Management research paper no. 2013–11 (2013).

Richard Brignoli and Lester Seigel. “The Role of Noise in LDC 
Growth.” Unpublished paper, February 1988.

Keith Cuthbertson, Simon Hayley, Nick Motson and Dirk 
Nitzsche. “Diversification Returns, Rebalancing Returns and 
Volatility Pumping” (January 14, 2015). https://ssrn.com/
abstract=2311240

Jan Hendrik Witte. “Volatility Harvesting: Extracting Return 
from Randomness.” Wilmott, May 2016: 60–67.

Appendix 1: Geometric and arithmetic growth rates

Let r be the arithmetic rate of return. Then log(1+r) is the 
geometric rate of return – what we call the growth rate.  
A second-order Taylor expansion of log(1+r) around the 
expectation of r – which we call μ – will give

(A1.1)log(1+r) ≈ log(1+µ) + 
(r-µ)

2 (1+µ)

r-µ

1+r 2
-

2

. 

Taking expectations on both sides, we obtain

(A1.2)E (g) = E (log(1+r)) ≈ log (1+µ) -
2(1+µ)

V(r)
2

. 

Therefore, as mentioned in the main text, a lower volatility  
of asset returns implies a higher expected growth.

When prices follow a geometric Brownian motion,

(A1.3)
dP

= µdt + σdWt.Pt

t
. 

Then, by Ito’s lemma,

(A1.4)
è
ç
æ

ø
÷
ö

dlogPt =
σ2

2
µ - dt + σdWt.. 

Hence, expected growth is equal to

(A1.5)E(g) = 
dlogPt

dt
σ2

2 ,= µ - , 

meaning that expected growth (or expected geometric return) 
is equal to the drift of the return (or expected arithmetic return) 
minus the variance of returns.

https://ssrn.com/abstract=2311240


5JAN 2020  •   QUANTITATIVE RESE ARCH AND ANALY TICS

15 

Appendix 2: Optimal growth portfolios with a risk asset and a riskless asset in discrete 
time 

We want to allocate a portfolio between a risk asset and a zero-yielding riskless asset. The 

risk asset value is multiplied by m (m is greater than 1) with probability p and by 1/m with 

probability (1−p). Call α the share of the risk asset in the portfolio. In the upstate, the 

portfolio delivers αm+(1−α); in the downstate, α/m+(1−α). To maximize growth, we want to 

choose α to optimize:  

(A2.1) 

The first-order condition is  

α*(m-1)+1
p(m-1)

1+α*(1/(m-1)-1)
(A2.2) 

The optimal allocation to the risk asset is hence 

α*= (p(m+1)-1)/(m-1) (A2.3) 

First, we build a portfolio with a risk asset and a riskless asset. The risk asset price S 

follows a geometric Brownian motion:  

dS
St

(A2.4) 

whereas the riskless asset price B follows the simple dynamic 

dB
(A2.5) 

(1-p)(1-1/m)=

= µdt + σdWt
t

= rdt.Bt

t
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If the allocation to the risk asset is α, then the portfolio dynamic is 

(A2.6) 

where πt is the value of the portfolio. To maximize the growth of this portfolio, we first

obtain an expression of logπ, using Ito’s lemma:  

dlogπt = (r+α(µ-r)- (α2σ2/2))dt+ασdWt. (A2.7) 

We now pick α to maximize the dt term: 

α*= (µ-r)/σ2. (A2.8) 

The optimal risk asset allocation is the asset risk premium divided by the variance of the 

return. It is also the Sharpe ratio divided by the volatility. The reader can check that the 

optimal excess growth over the risk-free rate is half the square of the risk asset Sharpe ratio 

by replacing α* in the growth equation. Again, by replacing the expression of α* in the

portfolio dynamics equation, one can see that the volatility of the portfolio is the risk asset 

Sharpe ratio.  

Looking at multiple assets following a multivariate geometric Brownian motion with 

parameters (µ,Σ), the problem, as before, is to find optimal weights by maximizing  

1
2r+α⊺ (µ-r)-   α⊺Σα (A2.9) 
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where α is an (n×1) vector of optimal weights in n risk assets, µ is an (n×1) vector of risk 

asset returns, Σ is the (n×n) covariance matrix (that is, the variances and covariances of risk 

returns) and r is an (n×1) constant vector of identical values r (risk-free rates). Setting the 

differential of the above expression with respect to α equal to zero, we find the optimal 

allocation to risk assets is  

(A2.10) 

Last, when asset returns are independent and, across all risk assets, Sharpe ratios are 

identical and volatilities are equal to σ, all risk asset weights are 1/n so the expression of the 

variance is trivially equal to  

1
2 α

⊺Σα = σ
2

2n. (A2.11) 
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